Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tob Induc Dis ; 222024.
Artigo em Inglês | MEDLINE | ID: mdl-38586496

RESUMO

INTRODUCTION: Smoking stands as a primary contributor to preventable deaths globally and is linked to an increased risk of developing kidney failure and other diseases. A few studies have focused on the negative correlation between serum cotinine and estimated glomerular filtration rate (eGFR), indicating decreased kidney function. This study investigated the associations between urinary cotinine metabolite concentration and serum eGFR among active smokers in urban households. METHODS: This was a cross-sectional study of active smokers in urban households' community Bangkok, Thailand from January to April 2023. The study involved 85 participants aged ≥18 years who were active smokers. Both urinary cotinine and serum eGFR concentrations were used as biomarkers. Independent sample t-tests were used to compare the urinary cotinine metabolite based on differences in the characteristic variable. We used multiple linear regression to test the association between cotinine metabolite and characteristics variables. Spearman's analysis was used to test the correlation between cotinine metabolite and eGFR concentration. RESULTS: The association between urinary cotinine metabolite and serum eGFR concentration decreased with increasing cotinine concentrations (r= -0.223, p=0.041), suggesting a decline in kidney function. However, this study found no significant difference between urinary cotinine metabolite and characteristic variables (p>0.05). Additionally, those who smoked for ≥10 years (117.40 ± 89.80 ng/mL), smoked ≥10 cigarettes per day (117.40 ± 89.80 ng/mL) and used conventional cigarettes (124.53 ± 115.10 ng/mL). The results of the multiple linear regression models analysis indicated that those who were smokers for ≥10 years (ß=0.076; 95% CI: -31.575-59.715) and those who were smoked ≥10 cigarettes/day (ß=0.126; 95% CI: -65.636-18.150) were not associated with urinary cotinine metabolite level. CONCLUSIONS: This study shows that the urinary cotinine metabolite level is associated with serum eGFR concentration among active smokers in urban households. The current study suggests that clinical identification and a prospective cohort study are needed before robust conclusions about how tobacco affects kidney efficiency.

2.
Sci Total Environ ; 918: 170720, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325467

RESUMO

BACKGROUND: Secondhand smoke (SHS) poses the most considerable health risk to children in urban households. However, limited evidence exists regarding the impact of children exposure to SHS on gamma-aminobutyric acid (GABA) levels. This study aimed to investigate the level of cotinine and GABA and their association with variables related to children exposed to SHS. METHODS: A cross-sectional analysis was conducted to assess urinary cotinine and GABA levels in respondents. The study involved 85 participants aged 2-4 years who resided with parents exhibiting heavy smoking habits in urban households in Bangkok, Thailand. Urinary cotinine and GABA concentrations were utilized as biomarkers and measured using an enzyme-linked immunosorbent assay kit. An independent t-test was employed to compare contributing factors with urinary cotinine metabolites. Spearman's correlation test was utilized to assess the relationship between cotinine metabolites and GABA concentration. RESULTS: The study found a correlation between urinary cotinine metabolites and GABA concentration among children's (r = 0.260, p-value = 0.016), particularly influenced by parents exhibiting extreme heavy smoking in urban households. Male children exhibited significantly higher urinary cotinine metabolite concentrations than females (p-value = 0.040). Moreover, significantly elevated levels of cotinine metabolites (57.37 ± 10.27 ng/ml) were observed in households where parents engaged in extreme heavy smoking. CONCLUSIONS: This research establishes a link between urinary cotinine metabolite levels and GABA concentration among children exposed to extreme heavy smoking by their parents in urban households. Consequently, smoking might impact neurobehavioral effects, potentially leading to insomnia. The study emphasizes the importance of promoting and safeguarding non-smokers from exposure to SHS in indoor workplaces, public spaces, and households, advocating for the implementation of smoke-free public health regulations.


Assuntos
Poluição por Fumaça de Tabaco , Criança , Feminino , Humanos , Masculino , Poluição por Fumaça de Tabaco/análise , Cotinina/análise , Estudos Transversais , Fumantes , Tailândia
3.
Biotechnol J ; 19(1): e2300330, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180313

RESUMO

NAD+ -dependent formate dehydrogenase (FDH) catalyzes the conversion of formate and NAD+ to produce carbon dioxide and NADH. The reaction is biotechnologically important because FDH is widely used for NADH regeneration in various enzymatic syntheses. However, major drawbacks of this versatile enzyme in industrial applications are its low activity, requiring its utilization in large amounts to achieve optimal process conditions. Here, FDH from Bacillus simplex (BsFDH) was characterized for its biochemical and catalytic properties in comparison to FDH from Pseudomonas sp. 101 (PsFDH), a commonly used FDH in various biocatalytic reactions. The data revealed that BsFDH possesses high formate oxidizing activity with a kcat value of 15.3 ± 1.9 s-1 at 25°C compared to 7.7 ± 1.0 s-1 for PsFDH. At the optimum temperature (60°C), BsFDH exhibited 6-fold greater activity than PsFDH. The BsFDH displayed higher pH stability and a superior tolerance toward sodium azide and H2 O2 inactivation, showing a 200-fold higher Ki value for azide inhibition and remaining stable in the presence of 0.5% H2 O2 compared to PsFDH. The application of BsFDH as a cofactor regeneration system for the detoxification of 4-nitrophenol by the reaction of HadA, which produced a H2 O2 byproduct was demonstrated. The biocatalytic cascades using BsFDH demonstrated a distinct superior conversion activity because the system tolerated H2 O2 well. Altogether, the data showed that BsFDH is a robust enzyme suitable for future application in industrial biotechnology.


Assuntos
Bacillus , Formiato Desidrogenases , NAD , Formiato Desidrogenases/metabolismo , NAD/metabolismo , Catálise , Formiatos
4.
FEBS J ; 291(3): 527-546, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37899720

RESUMO

Xanthine oxidoreductase (XOR) catalyzes the oxidation of purines (hypoxanthine and xanthine) to uric acid. XOR is widely used in various therapeutic and biotechnological applications. In this study, we characterized the biophysical and mechanistic properties of a novel bacterial XOR from Sulfobacillus acidophilus TPY (SaXOR). Our results showed that SaXOR is a heterotrimer consisting of three subunits, namely XoA, XoB, and XoC, which denote the molybdenum cofactor (Moco), 2Fe-2S, and FAD-binding domains, respectively. XoC was found to be stable when co-expressed with XoB, forming an XoBC complex. Furthermore, we prepared a fusion of XoB and XoC via a flexible linker (fusXoBC) and evaluated its function in comparison to that of XoBC. Spectroscopic analysis revealed that XoB harbors two 2Fe-2S clusters, whereas XoC bears a single-bound FAD cofactor. Electron transfer from reduced forms of XoC, XoBC, and fusXoBC to molecular oxygen (O2 ) during oxidative half-reaction yielded no flavin semiquinones, implying ultrafast single-electron transfer from 2Fe-2Sred to FAD. In the presence of XoA, XoBC and fusXoBC exhibited comparable XoA affinity and exploited a shared overall mechanism. Nonetheless, the linkage may accelerate the two-step, single-electron transfer cascade from 2Fe-2Sred to FAD while augmenting protein stability. Collectively, our findings provide novel insights into SaXOR properties and oxidation mechanisms divergent from prior mammalian and bacterial XOR paradigms.


Assuntos
Clostridiales , Proteínas Ferro-Enxofre , Xantina Desidrogenase , Animais , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo , Ferro/metabolismo , Oxirredução , Flavinas/metabolismo , Enxofre/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mamíferos/metabolismo
5.
Arch Biochem Biophys ; 747: 109768, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769893

RESUMO

3,4-Dihydroxyphenylacetate (DHPA) 2,3-dioxygenase (EC 1.13.11.15) from Acinetobacter baumannii (AbDHPAO) is an enzyme that catalyzes the 2,3-extradiol ring-cleavage of DHPA in the p-hydroxyphenylacetate (HPA) degradation pathway. While the biochemical reactions of various DHPAOs have been reported, only structures of DHPAO from Brevibacterium fuscum and their homologs are available. Here, we report the X-ray structure and biochemical characterization of an Fe2+-specific AbDHPAO that shares 12% sequence identity to the enzyme from B. fuscum. The 1.8 Å X-ray structure of apo-AbDHPAO was determined with four subunits per asymmetric unit, consistent with a homotetrameric structure. Interestingly, the αß-sandwiched fold of the AbDHPAO subunit is different from the dual ß-barrel-like motif of the well-characterized B. fuscum DHPAO structures; instead, it is similar to the structures of non-DHPA extradiol dioxygenases from Comamonas sp. and Sphingomonas paucimobilis. Similarly, these extradiol dioxygenases share the same chemistry owing to a conserved 2-His-1-carboxylate catalytic motif. Structure analysis and molecular docking suggested that the Fe2+ cofactor and substrate binding sites consist of the conserved residues His12, His57, and Glu238 forming a 2-His-1-carboxylate motif ligating to Fe2+ and DHPA bound with Fe2+ in an octahedral coordination. In addition to DHPA, AbDHPAO can also use other 3,4-dihydroxyphenylacetate derivatives with different aliphatic carboxylic acid substituents as substrates, albeit with low reactivity. Altogether, this report provides a better understanding of the structure and biochemical properties of AbDHPAO and its homologs, which is advancing further modification of DHPAO in future applications.

6.
Arch Biochem Biophys ; 745: 109712, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543353

RESUMO

Mangiferin, a polyphenolic xanthone glycoside found in various botanical sources, including mango (Mangifera indica L.) leaves, can exhibit a variety of bioactivities. Although mangiferin has been reported to inhibit many targets, none of the studies have investigated the inhibition of serine hydroxymethyltransferase (SHMT), an attractive target for antimalarial and anticancer drugs. SHMT, one of the key enzymes in the deoxythymidylate synthesis cycle, catalyzes the reversible conversion of l-serine and (6S)-tetrahydrofolate (THF) into glycine and 5,10-methylene THF. Here, in vitro and in silico studies were used to probe how mangiferin isolated from mango leaves inhibits Plasmodium falciparum and human cytosolic SHMTs. The inhibition kinetics at pH 7.5 revealed that mangiferin is a competitive inhibitor against THF for enzymes from both organisms. Molecular docking and molecular dynamic (MD) simulations demonstrated the inhibitory effects of the deprotonated forms of mangiferin, specifically the C6-O- species and its resonance C9-O- species appearing at pH 7.5, combined with two docked poses, either a xanthone or glucose moiety, placed inside the THF-binding pocket. The MD analysis revealed that both C6-O- and its resonance-stabilized C9-O- species can favorably bind to SHMT in a similar fashion to THF, supporting the THF competitive inhibition of mangiferin. In addition, characterization of the proton dissociation equilibria of isolated mangiferin revealed that only three hydroxy groups of the xanthone moiety, C6-OH, C3-OH, and C7-OH, underwent varying degrees of deprotonation with pKa values of 6.38 ± 0.11, 8.21 ± 0.35, and 12.37 ± 0.30, respectively, while C1-OH remained protonated. Altogether, our findings demonstrate a new bioactivity of mangiferin and provide the basis for the future development of mangiferin as a potent antimalarial and anticancer drug.


Assuntos
Antimaláricos , Antineoplásicos , Antagonistas do Ácido Fólico , Xantonas , Humanos , Antimaláricos/farmacologia , Glicina Hidroximetiltransferase , Simulação de Acoplamento Molecular , Xantonas/farmacologia , Antineoplásicos/farmacologia , Serina/química
7.
FEBS J ; 290(21): 5171-5195, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37522421

RESUMO

The dimethyl sulfone monooxygenase system is a two-component flavoprotein, catalyzing the monooxygenation of dimethyl sulfone (DMSO2 ) by oxidative cleavage producing methanesulfinate and formaldehyde. The reductase component (DMSR) is a flavoprotein with FMN as a cofactor, catalyzing flavin reduction using NADH. The monooxygenase (DMSMO) uses reduced flavin from the reductase and oxygen for substrate monooxygenation. DMSMO can bind to FMN and FMNH- with a Kd of 17.4 ± 0.9 µm and 4.08 ± 0.8 µm, respectively. The binding of FMN to DMSMO is required prior to binding DMSO2 . This also applies to the fast binding of reduced FMN to DMSMO followed by DMSO2 . Substituting reduced DMSR with FMNH- demonstrated the same oxidation kinetics, indicating that FMNH- from DMSR was transferred to DMSMO. The oxidation of FMNH- :DMSMO, with and without DMSO2 did not generate any flavin adducts for monooxygenation. Therefore, H2 O2 is likely to be the reactive agent to attack the substrate. The H2 O2 assay results demonstrated production of H2 O2 from the oxidation of FMNH- :DMSMO, whereas H2 O2 was not detected in the presence of DMSO2 , confirming H2 O2 utilization. The rate constant for methanesulfinate formation determined from rapid quenched flow and the rate constant for flavin oxidation were similar, indicating that H2 O2 rapidly reacts with DMSO2 , with flavin oxidation as the rate-limiting step. This is the first report of the kinetic mechanisms of both components using rapid kinetics and of a method for methanesulfinate detection using LC-MS.


Assuntos
Dimetil Sulfóxido , Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Peróxido de Hidrogênio , Flavoproteínas/metabolismo , Oxirredutases/metabolismo , Oxirredução , Flavinas/metabolismo , Cinética , Mononucleotídeo de Flavina/metabolismo
8.
Mol Biotechnol ; 65(4): 556-569, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36042106

RESUMO

Leishmaniasis, a parasitic disease found in parts of the tropics and subtropics, is caused by Leishmania protozoa infection. Nitroreductases (NTRs), enzymes involved in nitroaromatic prodrug activation, are attractive targets for leishmaniasis treatment development. In this study, a full-length recombinant NTR from the Leishmania orientalis isolate PCM2 (LoNTR), which causes severe leishmaniasis in Thailand, was successfully expressed in soluble form using chaperone co-expression in Escherichia coli BL21(DE3). The purified histidine-tagged enzyme (His6-LoNTR) had a subunit molecular mass of 36 kDa with no cofactor bound; however, the addition of exogenous flavin (either FMN or FAD) readily increased its enzyme activity. Bioinformatics analysis found that the unique N-terminal sequences of LoNTR is only present in Leishmania where the addition of this region might result in the loss of flavin binding. Either NADH or NADPH can serve as an electron donor to transfer electrons to nitrofurazone; however, NADPH was preferred. Molecular oxygen was identified as an additional electron acceptor resulting in wasteful electrons from NADPH for the main catalysis. Steady-state kinetic experiments revealed a ping-pong mechanism for His6-LoNTR with Km,NADPH, Km,NFZ, and kcat of 28 µM, 68 µM, and 0.84 min-1, respectively. Besides nitroreductase activity, His6-LoNTR also has the ability to reduce quinone derivatives. The properties of full-length His6-LoNTR were different from previously reported protozoa and bacterial NTRs in many respects. This study provides information of NTR catalysis to be developed as a potential future therapeutic target to treat leishmaniasis.


Assuntos
Leishmania , Leishmania/genética , Leishmania/metabolismo , NADP/metabolismo , Escherichia coli/metabolismo , Nitrorredutases/genética , Nitrorredutases/química , Cinética
9.
FEBS J ; 290(1): 176-195, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35942637

RESUMO

HadA monooxygenase catalyses the detoxification of halogenated phenols and nitrophenols via dehalogenation and denitration respectively. C4a-hydroperoxy-FAD is a key reactive intermediate wherein its formation, protonation and stabilization reflect enzyme efficiency. Herein, transient kinetics, site-directed mutagenesis and pH-dependent behaviours of HadA reaction were employed to identify key features stabilizing C4a-adducts in HadA. The formation of C4a-hydroperoxy-FAD is pH independent, whereas its decay and protonation of distal oxygen are associated with pKa values of 8.5 and 8.4 respectively. These values are correlated with product formation within a pH range of 7.6-9.1, indicating the importance of adduct stabilization to enzymatic efficiency. We identified Arg101 as a key residue for reduced FAD (FADH- ) binding and C4a-hydroperoxy-FAD formation due to the loss of these abilities as well as enzyme activity in HadAR101A and HadAR101Q . Mutations of the neighbouring Asn447 do not affect the rate of C4a-hydroperoxy-FAD formation; however, they impair FADH- binding. The disruption of Arg101/Asn447 hydrogen bond networking in HadAN447A increases the pKa value of C4a-hydroperoxy-FAD decay to 9.5; however, this pKa was not altered in HadAN447D (pKa of 8.5). Thus, Arg101/Asn447 pair should provide important interactions for FADH- binding and maintain the pKa associated with H2 O2 elimination from C4a-hydroperoxy-FAD in HadA. In the presence of substrate, the formation of C4a-hydroxy-FAD at the hydroxylation step is pH insensitive, and it dehydrates to form the oxidized FAD with pKa of 7.9. This structural feature might help elucidate how the reactive intermediate was stabilized in other flavin-dependent monooxygenases.


Assuntos
Flavinas , Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Oxirredução , Flavinas/metabolismo , Mutagênese Sítio-Dirigida , Fenóis , Cinética , Flavina-Adenina Dinucleotídeo/metabolismo
10.
FEBS J ; 290(9): 2449-2462, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36177488

RESUMO

Succinic semialdehyde dehydrogenase (SSADH) catalyses the conversion of succinic semialdehyde into succinic acid and two electrons are transferred to NAD(P)+ to yield NAD(P)H. Our previous work has already reported the catalytic role of Cys289 of two-cysteine SSADH from Acinetobacter baumannii (AbSSADH). However, the mechanistic role of the neighbouring conserved Cys291 and Glu255 remains unexplored. In this study, the functional roles of Cys291 and Glu255 in AbSSADH catalysis have been characterized. Results demonstrated that the E255A activity was almost completely lost, ~ 7000-fold lower than the wild-type (WT), indicating that Glu255 is very crucial and directly involved in AbSSADH catalysis. However, the C291A and C291S variants activity and catalytic turnover (kcat ) decreased ~ 2-fold and 9-fold respectively. To further characterize the functional roles of Cys291, we employed two pH-dependent methods; pre-steady-state burst amplitude and NADP-enzyme adduct formation. The results showed that the pKa values of catalytic Cys289 measured for the WT and C291A reactions were 7.8 and 8.7-8.8, respectively, suggesting that Cys291 can lower the pKa of Cys289 and consequently trigger the deprotonation of a Cys289 thiol. In addition, the Cys291 also plays a role in disulfide/sulfhydryl redox regulation for AbSSADH activity. Hence, we demonstrated for the first time the dual functions of Cys291 in enhancing the nucleophilicity of the catalytic Cys289 and regulating a disulfide/sulfhydryl redox switch for AbSSADH catalysis. The mechanistic insights into the nucleophilicity enhancement of the catalytic cysteine of AbSSADH might be applicable to understanding how the microenvironment increases cysteine reactivity in other enzymes in the aldehyde dehydrogenase superfamily.


Assuntos
Cisteína , Succinato-Semialdeído Desidrogenase , Succinato-Semialdeído Desidrogenase/metabolismo , Cisteína/química , NAD/metabolismo , Catálise , Aldeído Desidrogenase/metabolismo , Compostos de Sulfidrila , Cinética
11.
Proteins ; 90(6): 1291-1302, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35122330

RESUMO

HadA monooxygenase is involved in the initial step of the biodegradation pathway of toxic nitrophenols and halogenated phenols. HadA catalyzes the O2 -dependent denitration of nitrophenols and dehalogenation of halogenated phenols via the hydroquinone pathway. Based on bioinformatics and structural analysis, Arg208 of HadA is located at the proper position for substrate stabilization. This arginine is conserved among hydroquinone pathway-specific enzymes for toxicant detoxification. In this study, the function of Arg208 in HadA was determined by a single-point mutation creating HadAArg208 variants. 4-Nitrophenol was mineralized by HadAArg208 variants that contain side chains as a positive charge and hydrogen-bond donor, whereas 4-chlorophenol strictly required a positively charged environment for detoxification. Transient kinetic results indicated that the biodetoxification ability of HadAArg208 variants was diminished due to the slowing down of denitration/dehalogenation. The substrate-binding mode and affinity energy were evaluated by molecular docking. The findings were consistent with the experimental results indicating that arginine is the most fit for both 4-nitrophenol and 4-chlorophenol binding, whereas the active mutants provide a weaker interaction correlated with their denitration/dehalogenation activities. Altogether, Arg208 plays a role in providing proper chemical interactions to the substrate for binding at an appropriate orientation in the active site of hydroquinone pathway-specific enzymes. In addition, it is proposed to stabilize nitro groups and halide ions that are released in denitration/dehalogenation reactions. This conserved arginine might be the essential feature for related biocatalysts, which could be fundamental knowledge regarding this enzyme family.


Assuntos
Arginina , Oxigenases de Função Mista , Clorofenóis , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Simulação de Acoplamento Molecular , Nitrofenóis , Fenóis
12.
Chembiochem ; 23(11): e202100666, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35040514

RESUMO

Specific flavoenzyme oxidases catalyze oxidative decarboxylation in addition to their classical oxidation reactions in the same active sites. The mechanisms underlying oxidative decarboxylation by these enzymes and how they control their two activities are not clearly known. This article reviews the current state of knowledge of four enzymes from the l-amino acid oxidase and l-hydroxy acid oxidase families, including l-tryptophan 2-monooxygenase, l-phenylalanine 2-oxidase and l-lysine oxidase/monooxygenase and lactate monooxygenase which catalyze substrate oxidation and oxidative decarboxylation. Apart from specific interactions to allow substrate oxidation by the flavin cofactor, specific binding of oxidized product in the active sites appears to be important for enabling subsequent decarboxylation by these enzymes. Based on recent findings of l-lysine oxidase/monooxygenase, we propose that nucleophilic attack of H2 O2 on the imino acid product is the mechanism enabling oxidative decarboxylation.


Assuntos
Oxigenases de Função Mista , Estresse Oxidativo , Catálise , Descarboxilação , Oxigenases de Função Mista/metabolismo , Oxirredução
13.
J Biol Chem ; 297(2): 100952, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34252455

RESUMO

HadA is a flavin-dependent monooxygenase catalyzing hydroxylation plus dehalogenation/denitration, which is useful for biodetoxification and biodetection. In this study, the X-ray structure of wild-type HadA (HadAWT) co-complexed with reduced FAD (FADH-) and 4-nitrophenol (4NP) (HadAWT-FADH--4NP) was solved at 2.3-Å resolution, providing the first full package (with flavin and substrate bound) structure of a monooxygenase of this type. Residues Arg101, Gln158, Arg161, Thr193, Asp254, Arg233, and Arg439 constitute a flavin-binding pocket, whereas the 4NP-binding pocket contains the aromatic side chain of Phe206, which provides π-π stacking and also is a part of the hydrophobic pocket formed by Phe155, Phe286, Thr449, and Leu457. Based on site-directed mutagenesis and stopped-flow experiments, Thr193, Asp254, and His290 are important for C4a-hydroperoxyflavin formation with His290, also serving as a catalytic base for hydroxylation. We also identified a novel structural motif of quadruple π-stacking (π-π-π-π) provided by two 4NP and two Phe441 from two subunits. This motif promotes 4NP binding in a nonproductive dead-end complex, which prevents C4a-hydroperoxy-FAD formation when HadA is premixed with aromatic substrates. We also solved the structure of the HadAPhe441Val-FADH--4NP complex at 2.3-Å resolution. Although 4NP can still bind to this variant, the quadruple π-stacking motif was disrupted. All HadAPhe441 variants lack substrate inhibition behavior, confirming that quadruple π-stacking is a main cause of dead-end complex formation. Moreover, the activities of these HadAPhe441 variants were improved by ⁓20%, suggesting that insights gained from the flavin-dependent monooxygenases illustrated here should be useful for future improvement of HadA's biocatalytic applications.


Assuntos
Flavinas , Biocatálise , Catálise , Flavina-Adenina Dinucleotídeo/metabolismo , Hidroxilação , Cinética , Oxigenases de Função Mista/metabolismo
14.
FEBS J ; 288(10): 3246-3260, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33289305

RESUMO

Bacterial luciferase catalyzes a bioluminescent reaction by oxidizing long-chain aldehydes to acids using reduced FMN and oxygen as co-substrates. Although a flavin C4a-peroxide anion is postulated to be the intermediate reacting with aldehyde prior to light liberation, no clear identification of the protonation status of this intermediate has been reported. Here, transient kinetics, pH variation, and site-directed mutagenesis were employed to probe the protonation state of the flavin C4a-hydroperoxide in bacterial luciferase. The first observed intermediate, with a λmax of 385 nm, transformed to an intermediate with a λmax of 375 nm. Spectra of the first observed intermediate were pH-dependent, with a λmax of 385 nm at pH < 8.5 and 375 at pH > 9, correlating with a pKa of 7.7-8.1. These data are consistent with the first observed flavin C4a intermediate at pH < 8.5 being the protonated flavin C4a-hydroperoxide, which loses a proton to become an active flavin C4a-peroxide. Stopped-flow studies of His44Ala, His44Asp, and His44Asn variants showed only a single intermediate with a λmax of 385 nm at all pH values, and none of these variants generate light. These data indicate that His44 variants only form a flavin C4a-hydroperoxide, but not an active flavin C4a-peroxide, indicating an essential role for His44 in deprotonating the flavin C4a-hydroperoxide and initiating chemical catalysis. We also investigated the function of the adjacent His45; stopped-flow data and molecular dynamics simulations identify the role of this residue in binding reduced FMN.


Assuntos
Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , Peróxido de Hidrogênio/química , Luciferases Bacterianas/química , Oxigênio/química , Vibrio/química , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Luciferases Bacterianas/genética , Luciferases Bacterianas/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Oxigênio/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Prótons , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica , Vibrio/enzimologia
15.
Enzymes ; 47: 1-36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32951820

RESUMO

Flavin-dependent enzymes catalyze a wide variety of biological reactions that are important for all types of living organisms. Knowledge gained from studying the chemistry and biological functions of flavins and flavin-dependent enzymes has continuously made significant contributions to the development of the fields of enzymology and metabolism from the 1970s until now. The enzymes have been applied in various applications such as use as biocatalysts in synthetic processes for the chemical and pharmaceutical industries or in the biodetoxification and bioremediation of toxic or unwanted compounds, and as biosensors or biodetection tools for quantifying various agents of interest. Many flavin-dependent enzymes are also prime targets for drug development. Based on their reaction mechanisms, they can be classified into five categories: oxidase, dehydrogenase, monooxygenase, reductase, and redox neutral flavin-dependent enzymes. In this chapter, the general properties of flavin-dependent enzymes and the nature of their chemical reactions are discussed, along with their practical applications.


Assuntos
Flavinas/química , Oxigenases de Função Mista/química , Oxirredutases/química
16.
Enzymes ; 47: 283-326, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32951826

RESUMO

Many flavin-dependent phenolic hydroxylases (monooxygenases) have been extensively investigated. Their crystal structures and reaction mechanisms are well understood. These enzymes belong to groups A and D of the flavin-dependent monooxygenases and can be classified as single-component and two-component flavin-dependent monooxygenases. The insertion of molecular oxygen into the substrates catalyzed by these enzymes is beneficial for modifying the biological properties of phenolic compounds and their derivatives. This chapter provides an in-depth discussion of the structural features of single-component and two-component flavin-dependent phenolic hydroxylases. The reaction mechanisms of selected enzymes, including 3-hydroxy-benzoate 4-hydroxylase (PHBH) and 3-hydroxy-benzoate 6-hydroxylase as representatives of single-component enzymes and 3-hydroxyphenylacetate 4-hydroxylase (HPAH) as a representative of two-component enzymes, are discussed in detail. This chapter comprises the following four main parts: general reaction, structures, reaction mechanisms, and enzyme engineering for biocatalytic applications. Enzymes belonging to the same group catalyze similar reactions but have different unique structural features to control their reactivity to substrates and the formation and stabilization of C4a-hydroperoxyflavin. Protein engineering has been employed to improve the ability to use these enzymes to synthesize valuable compounds. A thorough understanding of the structural and mechanistic features controlling enzyme reactivity is useful for enzyme redesign and enzyme engineering for future biocatalytic applications.


Assuntos
Biocatálise , Oxigenases de Função Mista , Fenóis/química , Catálise , Flavinas/química , Cinética , Oxigenases de Função Mista/química , Oxigênio , Engenharia de Proteínas
17.
Enzymes ; 47: 365-397, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32951828

RESUMO

Flavin-dependent dehalogenases use flavin as a cofactor to catalyze carbon-halogen (C-X) bond cleavage from halogenated compounds which are mainly distributed as persistent environmental pollutants via anthropogenic activities. The accumulation of these compounds results in adaptation of bacteria to evolve metabolic pathways to metabolize the agents for four decades. Flavin-dependent enzymes have been evolved to catalyze dehalogenation in addition to its basal function. Apart from bacterial biodegradation, flavin-dependent dehalogenases also naturally appear in cellular metabolisms of higher organisms such as in human thyroid hormone. Although the removal of halogen is required in various applications, the usage of dehalogenases remains limited. In-depth understanding of their enzymatic mechanisms is useful for development of dehalogenases applications. Three main types of flavin-dependent dehalogenases are classified based on their reaction mechanisms reported to date: (1) flavin-dependent O2-utilizing dehalogenases; (2) flavin-dependent reductive dehalogenases; and (3) non-redox flavin-dependent dehalogenases. In this chapter, the catalytic properties, substrate scope, protein structures, enzymatic mechanisms, enzyme engineering, and also development of enzymes for novel applications are discussed.


Assuntos
Flavinas/química , Hidrolases/química , Animais , Bactérias/enzimologia , Biodegradação Ambiental , Catálise , Humanos , Engenharia de Proteínas
18.
Microb Biotechnol ; 13(1): 67-86, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31565852

RESUMO

Halogenated aromatics are used widely in various industrial, agricultural and household applications. However, due to their stability, most of these compounds persist for a long time, leading to accumulation in the environment. Biological degradation of halogenated aromatics provides sustainable, low-cost and environmentally friendly technologies for removing these toxicants from the environment. This minireview discusses the molecular mechanisms of the enzymatic reactions for degrading halogenated aromatics which naturally occur in various microorganisms. In general, the biodegradation process (especially for aerobic degradation) can be divided into three main steps: upper, middle and lower metabolic pathways which successively convert the toxic halogenated aromatics to common metabolites in cells. The most difficult step in the degradation of halogenated aromatics is the dehalogenation step in the middle pathway. Although a variety of enzymes are involved in the degradation of halogenated aromatics, these various pathways all share the common feature of eventually generating metabolites for utilizing in the energy-producing metabolic pathways in cells. An in-depth understanding of how microbes employ various enzymes in biodegradation can lead to the development of new biotechnologies via enzyme/cell/metabolic engineering or synthetic biology for sustainable biodegradation processes.


Assuntos
Hidrocarbonetos Halogenados , Redes e Vias Metabólicas , Biodegradação Ambiental , Redes e Vias Metabólicas/genética
19.
Chembiochem ; 20(24): 3020-3031, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31231908

RESUMO

HadA is a flavin-dependent monooxygenase that can catalyze the denitration and dehalogenation of a wide variety of toxicants such as pesticides. Although these enzymatic reactions are useful for bioremediation or biocatalysis, the application of HadA for these purposes is not yet possible because of its low thermostability. In this work we have engineered HadA to be more thermostable through the use of structural, in silico, and rational approaches. The X-ray structure of HadA was solved to obtain a reliable three-dimensional protein model for further prediction of thermostable variants. In silico analysis by using two bioinformatic tools-FireProt and Disulfide by Design-suggested 102 variants that we then further refined by applying rational criteria including the location of a particular residue and its nearby interactions, as well as other biophysical parameters to narrow down the list to six candidates. The G513Y variant was found to be an optimal engineered candidate because it has significantly improved stability relative to the wild-type enzyme and equivalent activity. G513Y has an activity half-life 72 (50 °C) and 160 times (45 °C) longer than that of the wild-type enzyme. Coupled together with thermostable reactions of reduced flavin and NADH-regenerating systems, the G513Y variant can be used to catalyze denitration of 4nitrophenol at 45 °C. Structure/sequence alignments of HadA and its homologues indicate that several flavin-dependent monooxygenases also contain amino acid residues homologous to the G513 of HadA, hence opening up the possibility of applying this engineering approach to improving their thermostabilities as well. Molecular dynamics (MD) simulations confirmed that the improved thermostability of the G513Y variant was due to aromatic hydrocarbon interactions between Y513 and N359, L347, G348, and F349.


Assuntos
Flavinas/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Temperatura , Sequência de Aminoácidos , Estabilidade Enzimática , Oxigenases de Função Mista/genética , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica
20.
Angew Chem Int Ed Engl ; 58(38): 13254-13258, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31233667

RESUMO

The flavin-dependent monooxygenase, HadA, catalyzes the dehalogenation and denitration of the toxicants, nitro- and halogenated phenols, to benzoquinone. The HadA reaction can be applied in one-pot reactions towards the de novo synthesis of d-luciferin by coupling with d-Cys condensation. d-luciferin, a valuable chemical widely used in biomedical applications, can be used as a substrate for the reaction of firefly luciferase to generate bioluminescence. As nitro- and halogenated phenols are key indicators of human overexposure to pesticides and pesticide contamination, the technology provides a sensitive and convenient tool for improved biomedical and environmental detection at ppb sensitivity in biological samples without the requirement for any pre-treatment. This dual-pronged method combines the advantages of waste biodetoxification to produce a valuable chemical as well as a smart detection tool for environmental and biomedical detection.


Assuntos
Fenóis/química , Halogenação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...